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Nonlinear diffusion in spinodal 
decomposition: a numerical solution 
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The numerical solution of the one-dimensional nonlinear diffusion equation with a nega- 
tive diffusion coefficient (up-hill diffusion) by a five-point approximation central differ- 
ence scheme is considered. The stability criteria are discussed in detail and a numerical 
solution is provided for a specific case in which the time evolution of a periodic compo- 
sition wave is presented with growth eventually leading to a stationary configuration. 
A critical comparison of the numerical solution with existing analytical solutions is 
shown. This leads to a simple semi-empirical growth law for studying the kinetics of 
spinodal decomposition in alloys. 

1. Introduction 
In recent years, a new class of material, the 
spinodal alloys [1, 2], have shown some unusual 
properties that have generated considerable 
interest in the field of materials science and engin- 
eering. An important factor for the current excite- 
ment in the field is the fact that the excellent 
properties of these alloys, such as mechanical, 
magnetic, electrical, etc, are a direct consequence 
of their microstructure which is produced by a 
solid phase transformation called spinodal decom- 
position. In a system like a spinodal alloy, certain 
compositional fluctuations are stable with respect 
to the solid solution and grow. Such a growth of 
composition wave is usually accompanied by a 
static lattice modulation which in turn produces 
internal stresses. Because of the anisotropic 
nature of the elastic strain energy associated with 
the internal stresses, the microstructure at the 
early stage of the decomposition- consists of the 
three mutually perpendicular composition waves 
along the three (1 00)  directions of the cubic 
materials in which spinodal decomposition is 
usually observed. Perhaps part of the considerable 
amount of interest that was shown to spinodal 
decomposition, resulted from the fact that a very 
elegant and mathematically attractive theory was 
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developed in the early sixties that could account 
for most of the experimental observations on 
these alloys. Cahn [3, 4] developed a generalized 
diffusion equation that explained the growth of 
the composition waves and their crystallographic 
orientation. The solution of the diffusion equation 
by Cahn predicted an exponential growth rate and 
is valid only for the very early stages, i.e. for 
infinitesimal fluctuations. This solution fails to 
describe the time evolution of the microstructure 
at long times. In a number of subsequent [5, 6] 
investigations of the later stages of the spinodal 
decomposition, some qualitative observations have 
been provided as to how a composition wave of 
large amplitude will grow, Most of the investi- 
gations state that at later stages the system spends 
most of its time in configurations which are called 
stationary states. These states are periodic waves 
of certain shape and amplitude depending on 
the wavelength and are solutions of the time- 
independent nonlinear diffusion equation. 
Recently, Tsakalakos [7] has shown that the 
analytical expressions of the stationary states in a 
one-dimensional system are Jacobian elliptic 
functions. 

Despite the success of the linear theory in des- 
cribing the early stages of spinodal decomposition 
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and the analytical solutions for the stationary 
states there are no current data that actually link 
the infinitesimal periodic wave with its corre- 
sponding stationary state. Nor has there been any 
quantitative growth rate derived at intermediate 
and later stages of the decomposition. Perturbation 
techniques [7] have shown there is a "slow down" 
effect from the exponential growth rate of the 
linear regime when the system approaches its 
stationary state. It is the purpose of this paper to 
provide an exact numerical solution of the non- 
linear diffusion equation in order to obtain time 
evolution of a spinodal structure. The generalized 
diffusion equation in one-dimension as derived by 
Cahn [3, 4] is given by 

~u _ ~ (/} ~ ) -~4u  

Ot' Ox' ~x,U --2K Ox,4, (1) 

where u(x ,  t) = e(x ,  t) - -  Co, in which e(x ,  t) is the 
composition at the distance x and at time t and 
Co is 'the average composition of the binary alloy, 
/) is the interdiffusion coefficient which in general 
for large amplitudes, depends on the composition, 
and the last term in the diffusion equation is called 
"gradient" energy term and was introduced by 
Cahn and Hilliard [8] to account for the increase 
of the free energy due to the gradient of compo- 
sition. Equation 1 can be normalized by the 
following substitutions: 

x '  = lx, t ' =  4t~'t and I = 2K1/2, 

yielding 

- u (2) 
Ot Ox 2 ax 4 " 

In order to maintain nonlinear terms up to the 
fourth order in this differential equation, a 
quadratic dependence o f / )  on the composition 
variation is required: 

s = Do + D l u  +O2u 2, 
for the case with D 0 < 0 ,  D I = 0 ,  D 2 > 0  and 
v = D2/iDol we obtain the reduced equation 

~u ~ [( au ] 1 ~4U 
3 t  = D~ - -  I + UU z ) ~  2 OX 4" (3) 

Since the solution is periodic with wavelength, 
X, the initial and boundary conditions are: 

u(x ,  O) = Q cos 27rx/X (4a) 
and 

Ou Ou 
--~(0, t) = ~xx(X'x) = 0, t > 0 ,  (4b) 

where Q is the amplitude of the composition wave. 
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2. Central difference scheme 
The general approach to solving differential 
equations by numerical methods requires the 
definition of intervals along the x-axis. The value 
of the derivative in each interval is then approxi- 
mated by a straight line. The mean value theorem 
states that a straight line connecting two points on 
a curve is parallel to the derivative of at least one 
point on the included interval. For slowly varying 
functions, this point is in the centre of the interval 
and the derivative is approached as the interval is 
made smaller. Taylor's expansion about the central 
point provides the numerical expressions and 
estimates the errors. The three-point central differ- 
ence scheme uses the neighbouring points on both 
sides of the central point, the five-point scheme 
uses two points on both sides. 

The Appendix contains a detailed error analysis 
for our model. At this point, it is sufficient to 
state that the truncation or round-off error intro- 
duced during any step in the iteration process 
must decay with subsequent iterations rather than 
grow in order that the numerical solution be stable 
and approach the analytical solution. 

In order to demonstrate the fundamental diffi- 
culty that one faces in attempting to obtain a 
numerical solution for the diffusion equation given 
in Equation 3, let us assume that v = 0 and K = 0. 
In this case, the equation reduces to: 

Ou O2u 
~t - IDol ~x--- T.  (5) 

This equation is identical to the backward heat 
diffusion equation better known as "ill-posed 
problems" in heat conduction. 

The three-point approximation to the second 
derivative about point x0 is: 

~2u 
Ox 2 = (1/Ax2)[U(Xo --  2oc) 

- 2 U ( X o )  + U(Xo + 

By separating terms with respect to space and 
time and rearranging, Equation 5 can be written 
a s :  

t~]+l  = -r(.1+1 + u!-O + (1 + 2 r M  (6) 

where r = A t / A x  2, i and ] refer to this discretiz- 
ation operation in space and time, respectively. 
As (1 + 2r) ~> 1 in the last term, we cannot ensure 
convergence of the numerical model with the 
analytical solution. Indeed, our attempts to obtain 
a solution by this method produced unstable 
results. 



Because of this instability, the method of finite 
differences employing a five-point formula based 
on Taylor series expansion about Xo was selected. 
The spatial partial derivatives are expressed using 
the central difference scheme: 

u'(xo) = 1/12Ax[u(xo -- 2Ax) -- 8U(Xo -- AX) 

+ 8U(Xo + A x ) -  U(Xo + 2 &x)] (7a) 

u"(Xo) = 1/12Ax2[--U(Xo-- ZAx) 

+ 16U(Xo -- Axo) -- 30U(Xo) 

+ 16U(Xo + Ax)--U(Xo + 2Ax)]. 

(7b) 

The partial derivative with respect to time is 
expressed as the forward difference: 

Ou(x, t) 1 
0t = [u(x, t + At)--u(x, t)]. (9) 

Thus, if we discretize in space, using the five-point 
central differences for the derivatives, a system of 
ordinary differential equations is obtained, which 
after time discretization by forward differences 
gives: 

U/+' = AU l ] = 0 , 1 , 2 , 3  . . . . .  N 

where 
vi = [,,~,u'~,.5 . . . .  . . 7  

Fo F1 F2 0 

F1 Fo FI F2 

F2 F1 Fo FI 

A = 0 F2 F1 Fo 

o 0 0 0 

F2 0 0 

F1 F2 0 

0 0 0 

0 0 0 

F2 0 0 

F1 F2 0 

0 0 F2 

0 0 0 

0 F2 F1 Fo F1 F2 0 

0 0 F2 F1 Fo F1 F2 

0 0 0 F2 Fx Fo F 1 /  

/ 0 0 0 0 F2 F1 Fo 

, (10)  

ulV(x0) = 1/Z~C4[--U(Xo -- 2AX) 

-- 4U(X0 -- ~r + 6U(X0) 

- 4U(Xo + ~c)  + U(Xo + 2~x)]. 

(7c) 

The following truncation error terms are associ- 
ated with each of these expressions: 

Ax 4 EI = - ~ -  [uV(~ ") -- uV(~)] (8a) 

Z~r 3 x 3 
EH = ~ [2uV(~ ") -- uV(r/)] ~ ~ uV(r/) (8b) 

Ax 7 
EIV = ~ [uV(~) - -  8uV(~)] ~ - -  ~ AX/,/v(n), 

(8c) 

where u v is the fifth derivative of u, Ax is a uni- 
form interval along the x-axis and 7? and ~" are 
points within the interval. A discussion of the 
error analysis is included in the Appendix. 

where N is the number of time iterations, n is the 
number of discrete intervals in space along one 
period of the composition wave and Fi, i = 0, 1,2 
are not constants but nonlinear functions of Uis 
given by: 

[ s  ~ 3 ,_~ 
Fo = 1 - - r [ ~ D + - ~ - - 2 p U  ~) ( l l a )  

F1 = r ( 4 / )  + ~ -T)  ( l l b )  

where 
At 

r - ~ ,  5 = - 1 + ~ ( u { )  ~ 

and 

U'2 ~Ox ] - 144Ax 2(Ui-2 1 

"['- 8 U i +  1 - -  U /+2 )  2. 

A has the characteristics of a transfer function, 
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that is, a function which transfers the values of the 
composition variation at time interval U i into the 
value at the next time interval U{ + 1 

It should be emphasized that the matrix ele- 
ments of A are not constants but functions of the 
composition variations U i. Such a pseudo-linear 
representation of the nonlinear diffusion equation 
has a significant advantage for it assists in develop- 
ing the criteria for stability and convergence. 
Although the coefficients of this linear representa- 
tion are not constant as indicated in Equations 1 la 
to c fruitful information can be obtained as a 
direct result of the physical behaviour of the 
nonlinear solution throughout its time evolution. 
By direct insPection of the nonlinear diffusion 
Equation 3, the following important conclusions 
about its solution can be stated: 

1. any periodic solution cannot have amplitude 
larger than the AC e = C e --C o where c e is the 
equilibrium Concentration. Since u is normalized 
to Ac e we therefore have the condition [U[. < 1. 
This also implies that 

-- 1 __</) =<_ - i + v; 

2. analytical solutions of the time-independent 
equation has shown [6-8]  that the maximum 
slope of any periodic configuration cannot exceed 
the slope of the equilibrium interface which can be 
described by a hyperbolic tangent. In our reduced 
representation, Equation 5, we have the condition 
that: Ig ' l  < 1 with equality occurring for a 
stationary state of infinite wavelength at x --X/4. 

Based upon these two physical conditions, we 
can now conclude that the Fis are bo,unded 
quantities for a given choice of the spatial and 
time intervals of the discretization. 

3. Results and discussion 
In order to test the stability of the numerical 
scheme the following non-linear case was chosen 
for investigation. A sinusoidal composition fluctu- 
ation was assumed as the initial condition at t = 0 
for the profile of the composition wave, having the 
following characteristic values: 

t = 0  U = 0 . 1  cos2rrx/X; X =  16.142664. 

A spatial discretization of 80 intervals was 
assigned and the following values of  the numerical 
parameters were chosen which satisfied the sta- 
bility criterion given in Equation A6. 

At = 0.00025, Ax = 0.201 7833 

which gives a value for r = 0.00614. 

1304 

0.2 

~0 

05 

O! 
o 60 70 3'o 

TIME 

Lu 
C~ 

g. 

Figure 1 Growth of the composition wave. The amplitude 
increases exponentially in the early stages, behaves non- 
linearly in the intermediate stage showing a slow-down 
effect. At later stages a stationary state is reached. 

Fig. 1 shows the time evolution of the com- 
position wave. It can be seen from the semi- 
logarithmic plot that the amplitude of the wave 
increases exponentially in the early stages as 
predicted by the linear theory. For intermediate 
stages the wave behaves nonlinearly by showing a 
"slow-down" effect followed by rapid growth. At 
later stages the growth diminishes and the wave 
reaches a stationary state. No further growth is 
observed. 

The results of these numerical calculations 
verify the prediction of early work [6-8] ,  that 
is, in real alloy systems the composition waves 
spend most of the time in configurations which 
are stationary states of the time independent 
(du/dt = 0) nonlinear diffusion equation. 
Tsakalakos [7] has shown that the stationary 
states can be expressed by: 

U*(x) = (1 _/~2)1/2 sn[(1 + tt2)X/2x], (12) 

where the asterisk indicates that U(x) is a stationary 
state and # is a parameter taking values between 0 
and 1. The sn(z) is the Jacobian Elliptic function 
and is periodic with wavelength: 

4 
X - (1 + g2)1/2 K(k2) (13) 

where k 2 = (1 --g2)/(1 + t~ 2) and K is the com- 
plete elliptic integral of the first kind. If  g = 0 
then 

U* = t anhx  (14) 

and for/~ -+ 1 it can be shown that 

U~..e. 1 ~ (1--g2)l/2sin2U2x. (15) 
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Figure 2 Profile of a single wavelength. The 
initial profile A at t = 0 and the numerical 
and analytical square-like wave B at t = 60. 

For the intermediate case, the stationary states 
approach square-like waves. For our particular 
case the wavelength X = 16.142 664 corresponds 
to k 2 =0.995 for which the amplitude of 
the stationary states can be calculated from 
Equation 14 to be: 

Q~h = 9987 

The numerical solution provided an amplitude: 

Qeal = 0.9984, 

which is in remarkable agreement with the theor- 
etical value. 

The profile of the wave is shown in Fig. 2. The 
initial profile at t = 0 is shown in curve A and the 
numerical solution is plotted at t = 60 (240 000 
iterations) together with the analytical solution 
(curve B). It is seen that the numerical and 
analytical solution agree to a better accuracy than 
0.03%. 

In order to compare the growth rate of  the 
numerical solution with that predicted by the 
linear theory, a Fourier transform of the computed 
composition profile was performed every 1000 
iterations. According to the linear theory the 
growth rate is given by: 

R(k) = k 2 ( - - 1 + ~ ) ,  (16) 

and for the above studied wavelength: 

R = 0.140 023. 

Thus, at t = 0, the Fourier amplitude should 
grow according to: 

Q(t) = 0.1e ~176176 

In Fig. 1, the amplitude of the first Fourier 
component is plotted against time as calculated 
by a numerical Fourier transform of the computed 
profile. It is that the wave increases exponentially 
at the early stages with growth rate R = 0.140 

which is in excellent agreement with the theor- 
etical calculations. At later stages the growth rate 
of the Fourier amplitude decreases continuously 
and finally reaches the value Q* = 1.18. To com- 
pare this value with the expected one, we expand 
the stationary states given in Equation 12 in 
Fourier series [9]: 

u*  = (27r(1 + ~ ) " ~ / ~ )  

x ~ {q(m+l)/2/[1--q(2m+l)]} 
m = 0  

x sin [(2m + 1)Tru/2K] (17) 
where 

q = exp(--nK'/K),  K ' ~ ( 1 - - k Z ) .  

For k 2 =  0.995, the amplitude of the first 
Fourier component in this expansion becomes: 
Q* = 1.18 which is identical to the one that the 
wave reaches at the very late stages. 

Perhaps the most important point in these 
numerical computations is the fact that the 
numerical scheme provides the actual kinetics 
from the early exponential growth to the later 
stages where a gradual retardation occurs and 
the wave reaches its stationary state. Although 
the analytical solutions exist for both the very 
early stages and the stationary state (infinite 
time) there has been no solution that links the two 
extreme cases together. Nor has there been any 
kinetics study of the intermediate configurations. 

Tsakalakos [7] has derived an approximate 
analytical formula for time evolution of the 
spinodal structure. This formula was based on 
perturbation techniques and is given by: 

Q(t) = Q~ tanh [(Qo/Q~eRq~ I. (18) 

This approximate solution is plotted in Fig. 3 
as curve B together with the numerical solution 
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Figure 3 The increase in amplitude of the composition 
wave against time. Curve A represents Cahn's linear solu- 
tion, B is Tsakalakos' approximate solution, and C is the 
solution by our numerical model. 

(curve C) and the linear solution (curve A). It can 
be seen that the agreement is remarkably good and 
indicates why Equation 1 provides the basis for 
kinetics studies of spinodal alloys. Such studies 
have been made by Ditchek and Schwartz [2] for 
the Cu-9Ni-6Sn spinodal alloys. It should be 
finally noted that non-linear behaviour at inter- 
mediate stages (t ~ 10) is due to the fact that the 
wave is trying to assume its square-like con- 
figuration by faster growth of the higher har- 
monics. This is indeed observed by the numerical 
Fourier transform performed during the numerical 
solution. After this intermediate stage, the wave 
grows towards its stationary state. 

A simulation of concentration wave growth in a 
spinodal alloy was performed be defining the 
initial concentration profile as the summation of 
80 cosinusoidal waves. The amplitude of each 
component was set equal to 0.005 on a normalized 
scale. This concentration profile was discretized 

La 0 .04 

0.02- 

C~ 0 

L~ -0.02- 
to 
(b 
to -0 .04 

4 0  ~ " 7 " f ~ " ~  80  

I0 0 0 0  ITERATIONS 

into 160 intervals and operated upon by the 
difference equation obtained by substituting 
Equation 7 into Equation 3. 

Figs. 4 to 6 illustrate three stages in the evol- 
ution of the spinodal structure. The concentration 
is plotted against distance for three values of 
elapsed time (iterations of  the programme). In 
Fig. 4 an early stage is illustrated which shows 
that the initital distribution has not been altered 
significantly after 10 000 iterations. Fig. 5 shows 
a time corresponding to an intermediate stage 
where the spinodal wavelength is becoming estab- 
lished. 

The stationary state is illustrated in Fig. 6. The 
wave has grown in amplitude and assumed a 
square-like profile. A careful examination of this 
reveals that the profile is not exactly periodic but 
that there is a slight deviation from the Jacobian 
elliptic function mentioned in Equation [12]. The 
computer simulation was continued to a total of 
100 000 iterations without a change in the ampli- 
tude and wavelength of Fig. 6. 

An alternate approach to illustrating the growth 
of the concentration wave is depicted in Fig. 7. 
Here the amplitude as a function of time in a 
logarithmic scale is plotted for three positions. 
The exponential growth, predicted by the linear 
theory, does not begin at all positions simul- 
taneously but proceeds only after the spinodal 
wavelength has been established. By allowing 
certain Fourier components to grow and others 
to decay, the system "sorts out" the proper 
wavelength for spinodal growth. The amplitude 
of the concentration waves begins to level off 
at 30000 iterations and is nearly constant after 
40 000. This transition from exponential growth 
to a wave of constant amplitude or the stationary 
state is the slow down effect predicted by the 
nonlinear theory [7]. 

In addition to the profile analysis in real space, 
a Fourier transform of the profile was performed 
at several time intervals. The increase in the 

Figure 4 The composition profile at an 
early stage. The profile has not been 
altered significantly from an initial dis- 
tribution composed of 80 cosinusoidal 
waves, each with a normalized amplitude 
of 0.005. 

1306 



I, O k  

L 
- 0 ' 5 t  ~ - ~  

/O ~ 

4,o ~ ao 

25 000 /TERAT/ONS 

Figure 5 The composition profile at an 
intermediate stage where the spinodal 
wavelength is being established. 

amplitude of three Fourier components is shown in 
Fig. 8. The growth obeys the predictions of the 
nonlinear theory of spinodal decomposition in 
that it is initially exponential and begins to level 
off as time progresses. The wave number (k = 
2.8) associated with the maximum amplitude has 
the greatest Fourier amplitude. The wave num- 
ber (k = 1.45) associated with a larger wavelength 
has a smaller stationary state amplitude and takes 
a longer time to reach it. This corresponds to the 
establishment of the square-like profile of the 
Jacobian elliptic function which requires the 
inclusion of additional Fourier components. 

Fig. 9 depicts the increase in intensity as a 
function of wave number with time. The slow 
down effect is clearly evident as weU as the shift 
to longer wavelengths of the real intensity as the 
stationary state is reached. Another feature to 
note is the growth of small peaks at smaller wave 
numbers. These are the result of computational 
errors and the finite size of the interval being 
considered in our model. 

Therefore, we have demonstrated that the five- 
point central difference numerical scheme can be 
successfully employed to solve the non-linear 

/ , O  

c~ 
g- 

-4 Q- QS- 

s 
k .  

-0.5- 
c~ k3 

-LO 

diffusion equation particularly in the case of 
uphill diffusion (negative diffusion coefficient). 
On the practical side, this scheme provides an 
excellent method of studying and predicting 
the properties of spinodal alloys as their superior 
properties depend on the microstructure which, 
in turn, is developed through the nonlinear 
diffusion process. A rigorous approach to the 
solution of this problem will require the numerical 
solution of the three-dimensional nonlinear 
diffusion equation. In addition, a modification of 
initial conditions is necessary to allow for a more 
realistic distribution of infinitesimal composition 
fluctuations. 

Such an attempt is currently in progress. Never- 
theless, our present investigation has set forward 
the basis for such future development by clearly 
demonstrating the stability of the numerical 
scheme and, in general, the potentiality it has for 
solving more complex nonlinear problems. 

Appendix. Error analysis 
The error analysis of the numerical solution is 
based on the equation [10-12] 

e J+t = A e  j (A1) 

~ 0 

50 000 / TERA TIONS 

Figure 6 The composition profile at the 
final stage. The wave has grown in ampli- 
tude and assumed a square-like profile, 
The stationary state has been reached. 
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Figure 7 Amplitude as a function of time illustrating 
exponential growth occurring only after the spinodal 
wavelength is established as well as the slow-down effect 
and the stationary states at three positions. These 
positions correspond to points along the x-axis in Figs. 
4 t o 6 .  
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Figure 9 Time evolution of the spinodal wavelength 
showing increase in intensity as a function of wave- 
length. The slow-down effect is clearly evident as well 
as a shift to longer wavelengths as the stationary state 
(Q*) is reached. 

where e j = U j -- u j where Ui is the exact solution 
and u i is the numerical solution of  the ]'th t ime 
interval and the quasi-pentadiagonal matrix A is 
given by  Equation 10. To secure stabili ty for the 

O.S. 

0.1- 

0.0I- 

O.OOJ 

5 = ~ 

b } b 5 4 ; ' 
10 0 0 0  ITERATIONS 

Figure 8 Growth of three Fourier components show 
exponential growth at early stages which levels off as 
time progresses. 

numerical scheme the following condit ion must 
be satisfied: 

p(A) <~ 1, 

where p(A)  is the spectral radius o f A  : 

p(A)  = max ]Xi[, 

where X i are the eigenvalues o f A .  
Bounds of  the eigenvalues of  A can be obtained 

using Gersgorin's theorem. Thus, we have: 

IXi - -Fo l  < 2 IFll + 2 IF2I. (A2) 

This condit ion is identical to the one obtained by  
utilizing the maximum norm condition: 

lie j+lll =< IIAII Ileill, (A3) 

in which IIAII~ ~< 1 is sufficient to insure stability. 

1~411==lFol+21F~i+21F21~_ 1 (A4) 

For  Fo > 0 the maximum norm is given: 

IIAII~ = 1 + r ~ + ~ - 5  + 2vU~ . (AS) 

This is a severe condit ion and for large values of  
U (U > 1) is not satisfied for any r and Ax. Despite 
the fact that the maximum norm condit ion is not  
met,  stabili ty was observed in the numerical 
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Figure 10 The effect of instabilities in the numerical 
model on the increase in amplitude. The stability criteria 
dictates that the errors due to central difference approxi- 
mation and the truncation which occurs at each step must 
decay with each subsequent iteration rather than 
accumulate. 

scheme if the condit ion F 0 > 0 was satisfied. 
For  F o < 0 instabili ty set in almost immediately 
after a few time steps. This is shown in Fig. 10 
where the ampli tude of  the wave as a function of 
t ime is plot ted.  For  the values (r, ~ c )  which give 
F0 > 0 an exponential  growth is observed (the linear 
equation was used, v = 0 to compare the numeri- 
cal solution to the analytical one) over three 
orders of  magnitude of  the amplitude growth. 

The numerical solution is in excellent agree- 
ment  with the analytical one as shown in Fig. 3. 
For  r and A~ which give F0 < 0 an error growth 
was observed which lead to an instabil i ty as seen 
in Fig. 10. Various values of  r and Ax were also 
used and verified that  the stabili ty criterion 
F0 > 0 was giving a stable solution. This, the 
condit ion for stabili ty is: 

3 ) 
r ~_ L) + ~ + 2vU '2 (A6) 

For  v = 3 and based upon the limits o f / ~  and 
U'  given in Equation 11, we can determine the 
region o f  r and Av for which stability is observed 
in the five-point central difference numerical 
scheme, as shown in Fig. 11. This pat tern of  
behaviour for which stability is observed i f  the 
inequali ty A6 is met but  [[A[[= > 1, is not unex- 
pected due to the fact the spectral radius p(A) 
might be less than one, while the maximum norm 
is greater than one. The condit ion IIA[[ ~< 1 is a 

l V= 0 
Z~L 
~X2 

~ o 
A X  2 

. . . . . . . .  

i i 

i i 
i i 

I I 

6 
5 l- / +./ 

Figure 11 Graphical iUustration of the stability criteria. 
Refer to text for details. 

sufficient condit ion and is necessary. It should 
be noted that  it is possible to refine the bound in 
Equation A2 by applying similarity transfor- 
mations on A and using Gersgorin's theorem. 
It is also possible to perform a reduction o f  the 
original quasi-pentadiagonal matrix A to a sym- 
metric tri-diagonal matr ix using Given's or House- 
holder 's  method for matr ix reductions [13]. In such 
a symmetr ic  tri-diagonal form, Sturm's sequence 
proper ty  can be applied to refine the bounds of  the 
eigenvalues and thus provide a bet ter  approxima- 
tion to the spectral radius p(A) .  
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